本文共 3652 字,大约阅读时间需要 12 分钟。
无聊的YYB总喜欢搞出一些正常人无法搞出的东西。有一天,无聊的YYB想出了一道无聊的题:无聊的数列。。。(K峰:这题不是傻X题吗)
维护一个数列{a[i]},支持两种操作:
1、1 L R K D:给出一个长度等于R-L+1的等差数列,首项为K,公差为D,并将它对应加到a[L]~a[R]的每一个数上。即:令a[L]=a[L]+K,a[L+1]=a[L+1]+K+D,
a[L+2]=a[L+2]+K+2D……a[R]=a[R]+K+(R-L)D。
2、2 P:询问序列的第P个数的值a[P]。
第一行两个整数数n,m,表示数列长度和操作个数。
第二行n个整数,第i个数表示a[i](i=1,2,3…,n)。
接下来的m行,表示m个操作,有两种形式:
1 L R K D
2 P 字母意义见描述(L≤R)。
对于每个询问,输出答案,每个答案占一行。
5 21 2 3 4 51 2 4 1 22 3
6
数据规模:
0≤n,m≤100000
|a[i]|,|K|,|D|≤200
Hint:
有没有巧妙的做法?
单点查询,
考虑差分:
对于区间[ L,R ]
在 L处 + k ,( L,R ] 区间+d,R+1处 -k-(R-L)*d;
可见就是区间修改和区间查询的问题;
那么用线段树就行了;
#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include //#pragma GCC optimize(2)using namespace std;#define maxn 1000005#define inf 0x7fffffff//#define INF 1e18#define rdint(x) scanf("%d",&x)#define rdllt(x) scanf("%lld",&x)#define rdult(x) scanf("%lu",&x)#define rdlf(x) scanf("%lf",&x)#define rdstr(x) scanf("%s",x)typedef long long ll;typedef unsigned long long ull;typedef unsigned int U;#define ms(x) memset((x),0,sizeof(x))const long long int mod = 1e9 + 7;#define Mod 1000000000#define sq(x) (x)*(x)#define eps 1e-3typedef pair pii;#define pi acos(-1.0)//const int N = 1005;#define REP(i,n) for(int i=0;i<(n);i++)typedef pair pii;inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x;}ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b);}int sqr(int x) { return x * x; }/*ll ans;ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans;}*/struct node { int sum; int l, r; int lazy;}tree[maxn];int n, m;int a[maxn];void pushup(int rt) { tree[rt].sum = tree[rt << 1].sum + tree[rt << 1 | 1].sum;}void pushdown(int rt) { if (tree[rt].lazy) { tree[rt << 1].lazy += tree[rt].lazy; tree[rt << 1 | 1].lazy += tree[rt].lazy; tree[rt << 1].sum += (tree[rt << 1].r - tree[rt << 1].l + 1)*tree[rt].lazy; tree[rt << 1 | 1].sum += (tree[rt << 1 | 1].r - tree[rt << 1 | 1].l + 1)*tree[rt].lazy; tree[rt].lazy = 0; }}void build(int l, int r, int rt) { tree[rt].l = l; tree[rt].r = r; tree[rt].lazy = 0; if (l == r) { tree[rt].sum = 0; return; } int mid = (l + r) >> 1; build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1); pushup(rt);}void upd(int l, int r, int rt, int val) { if (l <= tree[rt].l&&tree[rt].r <= r) { tree[rt].sum += (tree[rt].r - tree[rt].l + 1)*val; tree[rt].lazy += val; return; } pushdown(rt); int mid = (tree[rt].l + tree[rt].r) >> 1; if (l <= mid)upd(l, r, rt << 1, val); if (r > mid)upd(l, r, rt << 1 | 1, val); pushup(rt);}int query(int l, int r, int rt) { if (l <= tree[rt].l&&tree[rt].r <= r) { return tree[rt].sum; } pushdown(rt); int mid = (tree[rt].r + tree[rt].l) >> 1; ll ans = 0; if (l <= mid)ans += query(l, r, rt << 1); if (mid < r)ans += query(l, r, rt << 1 | 1); return ans;}int main() { //ios::sync_with_stdio(0); rdint(n); rdint(m); for (int i = 1; i <= n; i++)rdint(a[i]); build(1, n, 1); while (m--) { int op; rdint(op); if (op == 1) { int l, r, k, d; rdint(l); rdint(r); rdint(k); rdint(d); upd(l, l, 1, k); if(r>l) upd(l + 1, r, 1, d); if(r!=n)upd(r + 1, r + 1, 1, -k - (r - l)*d); } else { int x; rdint(x); cout << a[x] + query(1, x, 1) << endl; } } return 0;}
转载于:https://www.cnblogs.com/zxyqzy/p/10263657.html